
1

MODULE II

Syllabus of module 2

 Classes fundamentals

 Objects

 Methods

 Constructors

 Parameter passing

 Overloading

 Access control keywords.

Creating and Using Classes in Java
 Syntax of Class :

class classname
{

type instance-variable1;
type instance-variable2;
// ...
type instance-variableN;
type methodname1(parameter-list)
{ // body of method }
type methodname2(parameter-list)
{ // body of method }
// ...
type methodnameN(parameter-list)
{ // body of method }

}

4

 Class defines a new data type.

 Once defined, it can be used to create objects of that type.

 A class is a template for an object, and an object is an instance of a

class.

 The methods and variables defined within a class are called

members of the class.

 The variables, defined within a class are called instance variables.

The data for one object is separate and unique from the data for

another.

 Methods determine how class data can be used.

 Example:

Define a class Box which defines three instance variables: width,

height, and depth.

class Box

{

double width;

double height;

double depth;

}

 This class defines a new data type called Box

Declaring a class Object
 An object is an instance of a class.

 Declaration of an object is a two-step process :

 Declare a variable of the class type.

 Acquire an actual, physical copy of the object and assign it to that

variable. This can be done using the new operator.

 The new operator dynamically allocates memory for an object and

returns a reference to it. This reference is the address in memory of

the object allocated by new. This reference is then stored in the

variable.

 Example :

Box mybox; // declare reference to object

mybox = new Box(); // allocate a Box object

The above statements can also be written as follows

Box mybox = new Box();

 To access the variables dot (.) operator is used.

 Example : assign the width variable of mybox the value 100

mybox.width = 100;

 If we have two Box objects, each has its own copy of depth,

width, and height. Changes to the instance variables of one object

have no effect on the instance variables of another.

 Write a program to find the volume of a box, whose dimensions

are given

Assigning Object Reference Variables

 Example:

Box b1 = new Box();

Box b2 = b1;

 A subsequent assignment to b1 will simply unhook b1 from the
original object without affecting the object or affecting b2.

 Example: Box b1 = new Box();

Box b2 = b1;

// ...

b1 = null;

Here, b1 has been set to null, but b2 still points to the original
object.

13

14

class Sampleapp {

public static void main(String[] args) {

Box mybox = new Box();

Box b2=mybox;

System.out.println("Enter width, height and depth ");

mybox.width = 2;

mybox.height =2;

mybox.depth = 3;

b2.width=12;

System.out.println("Width of box mybox : "+mybox.width);

System.out.println(“Depth of box mybox : "+b2.depth);

}

//output

Width of box mybox :12

Depth of box mybox : 3

}

Methods
 Syntax : type name(parameter-list)

{

// body of method

}

 Methods that have a return type other than void return a value to the

calling routine

 Syntax :

return value;

• The type of data returned by a method must be compatible with the return

type specified by the method.

• The variable receiving the value returned by a method must also be

compatible with the return type specified for the method.

 The name of the method should be a legal identifier.

Q1)Write a program to find the volume of a box using method.

Q2)Write a program to find the volume of a box (whose
dimensions are given) using method with a return type.

Q3)Write a program to find the volume of a box(whose
dimensions are given) using parameterized method.

 Q2

 Q3

TUTORIAL 3

1. Create a class circle with data field radius. Calculate the

area and perimeter using methods with return type.

2. Create a class student with fields rollno, name and marks of

three subjects. Calculate the total marks and percentage

obtained by the student.

Argument/Parameter Passing

 Two ways to pass an argument to a method :

 call-by-value (or pass by value)

 call-by-reference (or pass by reference)

 Call by value : If we call a method by passing a value, it is known

as call by value. The changes being done in the called method, is

not affected in the calling method.

 Call by Reference: Here original value is changed if changes are

made in the called method. If we pass object in place of any

primitive value, original value will be changed.

Example for Pass by value

Output:

 Example for Call By Reference (here object is passed as parameter)

Output

Returning Objects in Methods

Constructors

 Used to initialize objects when they are created.

 It has the same name as the class in which it resides.

 It is syntactically similar to a method.

 The constructor is automatically called immediately after the

object is created.

 Constructors have no return type.

 Java supports 2 types of constructors:

 Default Constructor - does not have an argument.

 Parameterized Constructor - A constructor having parameter is

called parameterized constructor.

https://www.smartherd.com/constructors-in-java/#default-constructor
https://www.smartherd.com/constructors-in-java/#parameterized-constructor

Default Constructor:

 A default constructor does not have an argument.

 It provides default values to the object.

 If no constructor is designed by the user explicitly, java

compiler implicitly provides a default constructor.

 JVM calls that system defined default constructor at the time of

object creation.

 If we define a default constructor, JVM will call the user-

defined default constructor.

29

Parameterized Constructor:

 The parameterized constructor has parameters.

 The values for these parameters must be provided when the

constructor is called.

 This type of constructor is used to provide different

values for the data members of different objects.

 The programmer has to explicitly define such a constructor.

Java compiler never provides any parameterized constructor,

unlike default constructor.

 Calling the parameterized constructor without defining it

will generate a compile-time error.

30

Q1. Write a program to find the volume of a box using

constructor

Q2. Write a program to find the volume of a box using
parameterized constructor

Q1 (Example of Default Constructor)

Q2 (Example of Parameterized Constructor)

Overloading

 Overloading refers to the ability of a class to have multiple

constructors or multiple methods with the same name but with

different number or type of arguments list.

 Overloading is a way by which java implements polymorphism.

 There are two types :

 Method Overloading

 Constructor loading

Method Overloading

 In Java it is possible to define two or more methods within the

same class that share the same name, as long as their parameter

declarations are different. This is called method overloading.

 When an overloaded method is invoked, Java uses the type and/or

number of arguments as its guide to determine which version of the

overloaded method to actually call.

 While overloaded methods may have different return types, the

return type alone is insufficient to distinguish two versions of a

method.

 Q)Write a program to display a character, integer number and a

floating point number using the concept of method overloading

class DisplayOverloading2 {

public void disp(char c)

{

System.out.println(c);

}

public void disp(int c)

{

System.out.println(c);

}

public void disp(float c)

{

System.out.println(c);

} }

class Sample2{

public static void main(String args[])

{

DisplayOverloading2 obj = new DisplayOverloading2();

obj.disp('a');

obj.disp(5); o/p a

obj.disp(2.5f); 5

} } 2.536

Constructor Overloading

 Constructor methods can also be overloaded

class Box

{ double width, height,depth;

Box(double w, double h, double d)

{ width = w; height = h; depth = d;

}

Box()

{ width = -1; height = -1; depth = -1;

}

Box(double len)

{ width = height = depth = len;

}

double volume()

{ return width * height * depth;

}

}

class OverloadCons

{

public static void main(String args[])

{

Box mybox1 = new Box(10, 20, 15);

Box mybox2 = new Box();

Box mycube = new Box(7);

double vol;

vol = mybox1.volume();

System.out.println("Volume of mybox1 is " +

vol);

vol = mybox2.volume();

System.out.println("Volume of mybox2 is " +

vol);

vol = mycube.volume();

System.out.println("Volume of mycube is " +

vol); /* o/p Volume of mybox1 is 3000.0

} Volume of mybox2 is -1.0

} Volume of cube is 343.0 */

38

this Keyword

 In Java, “this” is a reference variable that always refers to the

current object. “this” can be used to resolve any name space

collisions that might occur between instance variables and

local variables.

We can use “this” keyword as follows:

 in the current class to

1.refer to the instance variable

2.invoke the constructor

3.invoke the method

 can be passed as an argument in a method call

 can be passed as an argument in a constructor call

 to return the current class instance

1) this: to refer current class instance variable (Problem if we don’t use ‘this’)

class Student{

int rollno;

String name;

Student(int rollno,String name){

rollno=rollno;

name=name; }

void display(){System.out.println(rollno+" "+name);}

}

classTestThis1{

public static void main(String args[]){

Student s1=new Student(111,"ankit");

Student s2=new Student(112,"sumit");

s1.display(); o/p 0 null

s2.display(); 0 null

}}
39

1) this: to refer current class instance variable (Solution using ‘this’)

class Student{

int rollno;

String name;

Student(int rollno,String name){

this.rollno=rollno;

this.name=name; }

void display(){System.out.println(rollno+" "+name);}

}

classTestThis1{

public static void main(String args[]){

Student s1=new Student(111,"ankit");

Student s2=new Student(112,"sumit");

s1.display(); o/p 111 ankit

s2.display(); 112 sumit

}}
40

41

2) this: to invoke current class method (Example 1)

class Test {

void display()

{

// calling function show()

this.show();

System.out.println("Inside display function");

}

void show() {

System.out.println("Inside show funcion");

}

public static void main(String args[]) {

Test t1 = new Test();

t1.display();

} o/p Inside show funcion

} Inside display function

42

3) this() : to invoke current class constructor (Example 1)

/*The this() constructor call can be used to invoke the current class constructor.

It is used to reuse the constructor. In other words, it is used for constructor

chaining.*/

class A{

A()

{ System.out.println("hello a"); } o/p hello a

A(int x){ 10

this();

System.out.println(x);

}

}

classTestThis5{

public static void main(String args[]){

A a=new A(10);

}}

Access Control
 The job of access specifier is to specify the scope of a

variable (data member), function (method), constructor or

any class.

 Access specifiers in Java are :

 Public : This member can be accessed by any other code

 Private : This member can only be accessed by other members of

its class.

 Protected : It is applied only when inheritance is involved.

 Default: Members of the same class as well as members of a

different class within the same package can access the default

members.

 When no access specifier is used, then by default the member of a

class is public within its own package, but cannot be accessed

outside of its package.

44

class Test

{

int a;

public int b;

private int c;

void setc(int i)

{

c = i;

}

int getc()

{

return c;

}

}

class AccessTest

{

public static void main(String args[])

{

Test ob = new Test();

// These are OK, a and b may be accessed directly

ob.a = 10;

ob.b = 20;

// This is not OK and will cause an error

// ob.c = 100; // Error!

// You must access c through its methods

ob.setc(100); // OK

System.out.println("a, b, and c: " + ob.a + " "

+ ob.b + " " + ob.getc());

}

}

Tutorial 4
1. Write a java program to design a class to represent a bank

account. Include the following members:

Data members: name of depositor, Account number, Type of Account,

Balance amount in account.

Methods : To assign initial values(use constructor), To deposit an amount, To

withdraw an amount after checking balance, To display the name and balance.

2. Is there error in the following code. If yes then correct it.

public class Figure

{

public String draw(String s){

return “figure drawn”; }

public void draw(String s){}

public void draw(double f){}

}

static keyword

 When a member is declared static, it can be accessed before any

objects of its class are created, and without reference to any object.

 Example : main()

 Variables, methods, blocks and nested classes can be declared as

static.

 Example : static int i;

static void add(){ ……. }

 Instance variables declared as static are, essentially, global

variables.

 When objects of its class are declared, no copy of a static variable

is made. Instead, all instances of the class share the same static

variable.

Advantage – Makes the program memory efficient.

Advantage of static variable (Memory efficient)

class Student{

int rollno;

String name;

String college=“VJC"; }

Student(int r, String n,String c)

{

rollno = r;

name = n;

college=c;

}

}

public classTestStaticVariable1{

public static void main(String args[]){

Student s1 = new Student(111,“Amy“,”VJC”)

Student s2 = new Student(222,"Anu“,”VJC”);

}}

class Student{

int rollno;

String name;

static String college=“VJC"; }

Student(int r, String n)

{

rollno = r;

name = n;

}

}

public classTestStaticVariable1{

public static void main(String args[]){

Student s1 = new Student(111,“Amy“);

Student s2 = new Student(222,"Anu“);

}}

 Properties of static Methods :

 They can only call other static methods.

 They must only access static data.

 They cannot refer to this or super in any way.

 Syntax for calling static methods and variables from outside of the

class is : classname.method(); //access static methods

classname.var_name ; //access static variables

 Static block : It is defined inside a class and can be used to

initialize static variables, which gets executed exactly once, when

the class is first loaded before main.

 Syntax : static

{…………

}

Example 1

class StaticDemo {

static int a = 42;

static int b ;

static

{ b=a*2;

}

static void callme()

{ System.out.println("a = " + a);

} }

class StaticByName

{ public static void main(String args[])

{

StaticDemo.callme();

System.out.println("b = " + StaticDemo.b);

}

}

51

Example 2

class Staticdemo{

public static void main(String args[])

{

Counter c1=new Counter();

c1.incrementCounter();

Counter c2=new Counter();

c2.incrementCounter();

} }

class Counter{

static int c=0;

public void incrementCounter(){

c++;

System.out.println(c); o/p 1

} } 2

Example 3(static block)

class Staticblock {

static int a=10;

static int b;

static{ //static block

System.out.println("Static block");

b=a*4;

}

public static void main(String args[])

{

System.out.println("from main");

System.out.println("Value of a : "+a+ "and b : " +b);

}

} o/p Static block

from main

Value of a: 10 and b: 40

52

Example 4(static nested class)
public class Outer {

static class Nested_Demo {

public void my_method()

{

System.out.println("This is my nested class");

}

} o/p This is my nested class

public static void main(String args[])

{

Outer.Nested_Demo nested = new Outer.Nested_Demo();

nested.my_method();

} }/* You cannot use the static keyword with a class unless it is an

inner class. A static inner class is a nested class which is a static

member of the outer class. It can be accessed without

instantiating the outer class, using other static members. */53

final Variables

 The final keyword in java is used to restrict the user. The java

final keyword can be used in many context. Final can be:

1. variable

2. method

3. class

A final variable that have no value is called blank final variable or

uninitialized final variable. It can be initialized in the constructor

only. The blank final variable can be static also which will be

initialized in the static block only.

55

Final variables

 If a variable is declared with the final keyword, its value cannot

be changed once initialized.

Example

class ExFinalVariable

{

final int var = 50;

var = 60 //This line would give an error

}

56

Final methods

A method, declared with the final keyword, cannot be overridden or hidden by

subclasses.

Example

class Base{

public final void finalMethod(){

System.out.print("Base");

} }

class Derived extends Base{

public final void finalMethod() { //Overriding the final method throws an

error

System.out.print("Derived");

}

}
57

Final classes

 A class declared as a final class, cannot be subclassed

Example

// declaring a final class

final class FinalClass {

//...

}

class Subclass extends FinalClass

{ //attempting to subclass a final class throws an error

//...

}
58

Final Variables, Methods and Classes

 The keyword final has three uses.

 Equivalent to named constants :

 The value of the final variable can never be changed.

 Final variables behave like class variables and they do not take any space on

individual objects of the class.

 Example : final int size=100;

 To Prevent Overriding :

 To prevent the subclasses from overriding the members of the super class, we can

declare them as final in its super class using the keyword final.

 To Prevent Inheritance :

 Precede the class declaration with final.

 Declaring a class as final implicitly declares all of its methods as final, too.

 It is illegal to declare a class as both abstract and final

Inner classes

 In Java, just like methods, a class too can have another class as

its member.The class written within is called the nested

class, and the class that holds the inner class is called

the outer class.

 Nested classes are divided into two types −

 Inner classes or Non-static nested classes − These are

the non-static members of a class.

 Static nested classes − These are the static members of a

class.

60

Example – inner classes(non-static nested classes)

class Outer {

// Simple nested inner class

class Inner {

public void show() {

System.out.println("In a nested class method");

}

}

}

class Nested {

public static void main(String[] args) {

Outer.Inner in = new Outer().new Inner();

in.show(); o/p In a nested class method

} }61

Java Command line argument
 The command line argument is the argument that passed to a

program during runtime.

 It is the way to pass argument to the main method in Java.

 These arguments store into the String type args parameter

which is main method parameter.

 To access these arguments, you can simply traverse the args

parameter in the loop or use direct index value because args

is an array of type String.

62

Example

class Cmdline

{

public static void main(String[] args)

{

for(int i=0;i< args.length;i++)

{

System.out.println(args[i]);

} //To run the program - java Cmdline hello world

} o/p hello

} world

63

Variable Length Argument (Varargs)

• The varargs allows the method to accept zero or muliple

arguments.

• Variable length arguments are most useful when the number of

arguments to be passed to the method is not known beforehand.

• Variable number of arguments are represented by three dotes

(…)

Advantage of Varargs:

 We don't have to provide overloaded methods, so less code.

64

Example 1

class Varagex1{

int sum(int...num) {

int total=0;

for(int x:num)

{

total=total+x;

}

return total;

}

public static void main(String args[]){

int s;

Varagex1 e=new Varagex1();

s=e.sum(1,2,3);

System.out.println(“The sum is “ +s);

} } o/p The sum is 665

Example 2

class Demo{

public static void Varar(String...str)

{

System.out.println("num of args" +str.length);

System.out.println("The arguments are ");

for(String a:str)

System.out.println(a); o/p num of args 2

} The arguments are

public static void main(String args[]) Apple

{ mango

Varar("Apple","mango"); num of args 1

Varar("Pear"); The arguments are

} Pear

}66

Recursion in Java

• Recursion in java is a process in which a method calls itself

continuously. A method in java that calls itself is called recursive

method.

• It makes the code compact.

67

Example 1: Factorial

public class RecursionExample {

static int factorial(int n){

if (n == 1)

return 1;

else

return(n * factorial(n-1));

}

public static void main(String[] args) {

System.out.println("Factorial of 5 is: "+factorial(5));

}

}
68

Working of above program:

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

return 1

return 2*1 = 2

return 3*2 = 6

return 4*6 = 24

return 5*24 = 120

69

Example 2: Fibonacci Series

public class RecursionExample {

static int n1=0,n2=1,n3=0;

static void printFibo(int count)

{

if(count>0){

n3 = n1 + n2;

n1 = n2;

n2 = n3;

System.out.print(" "+n3);

printFibo(count-1);

}

}

public static void main(String[] args) {

int count=5;

System.out.print(n1+" "+n2);//printing 0

and 1

printFibo(count-2);

//count-

2 because 2 numbers are already printed

}

}

o/p 0 1 1 2 3

Arrays

• An array is a group of like-typed variables that are referred to by a

common name. Arrays of any type can be created and may have one

or more dimensions. A specific element in an array is accessed by its

index.

 One-Dimensional Arrays

 A one-dimensional array is a list of like-typed variables. In Java all

arrays are dynamically allocated.

 Declaration and memory allocation can be done in Two steps

 First, declare a variable of the desired array type. Second, allocate the

memory that will hold the array, using new (special operator that

allocates memory), and assign it to the array variable.

 Syntax 1: Example

type var-name[]; int month_days[];

var-name = new type[size]; month_days = new int[12];
71

 Syntax 2: Example

type[] var-name; int[] month_days;

var-name = new type[size]; month_days = new int[12];

 It is possible to combine the declaration of the array variable with the

allocation ofthe array itself

 Syntax 1: Example

type var-name[] = new type[size]; int month_days[] = new int[12];

 Syntax 2:

type[] var-name = new type[size]; int[] month_days = new int[12];

• Arrays can be initialized when they are declared. An array initializer is a list of

comma-separated expressions surrounded by curly braces.

Eg) int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

72

Example

// Average an array of values.

class Average

{

public static void main(String args[])

{

double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};

double result = 0;

int i;

for(i=0; i<5; i++)

result = result + nums[i];

System.out.println("Average is " + result / 5);

}

}
73

Multidimensional Arrays

 In Java, multidimensional arrays are actually arrays of arrays.

 Declaration Example :

int twoD[][] = new int[4][5]; OR int[][] twoD = new int[4][5];

 This allocates a 4 by 5 array and assigns it to twoD.

74

Example: Print the elements in the matrix

class TwoDArray{

public static void main(String args[]) {

int twoD[][]= new int[4][5];

int i, j, k = 0;

for(i=0; i<4; i++)

for(j=0; j<5; j++) {

twoD[i][j] = k;

k++; }

for(i=0; i<4; i++) {

for(j=0; j<5; j++)

System.out.print(twoD[i][j] + " ");

System.out.println(); }

} }

75

 When you allocate memory for a multidimensional array, we need

only specify the memory for the first (leftmost) dimension. we can

allocate the remaining dimensions separately.

Example

int twoD[][] = new int[3][]; This is how the array looks like

twoD[0] = new int[1];

twoD[1] = new int[2];

twoD[2] = new int[3];

 It is possible to initialize multidimensional arrays. To do so, simply

enclose each dimension’s initializer within its own set of curly braces.

 Expressions as well as literal values can be used inside array initializer.

Example int m[][] = { { 0, 1, 2, 3 },

{ 4, 5, 6, 7 },

{8,9,10,11} };

Vector class

• Vector implements a dynamic array that means it can grow or

shrink as required.

• Like an array, it contains components that can be accessed using

an integer index.

• It can hold objects of any type and any number.

• Vector class is contained in java.util package.

 It is similar to ArrayList, but with two differences −

1.Vector is synchronized.

2.Vector contains many legacy methods that are not part of the

collections framework.

 It extends AbstractList and implements List interfaces.

77

• Vector proves to be very useful if you don't know the size of

the array in advance or you just need one that can change

sizes over the lifetime of a program.

Constructors of Vector –Vector class provides 4

constructors

1. Vector(): Creates a default vector of initial capacity is 10.

2. Vector(int size): Creates a vector whose initial capacity is

specified by size.

3. Vector(int size, int incr): Creates a vector whose initial

capacity is specified by size and increment is specified by incr.

It specifies the number of elements to allocate each time that

a vector is resized upward.

4.Vector(Collection c): Creates a vector that contains the

elements of collection c.
78

Important points regarding Increment of vector

capacity:

If increment is specified, Vector will expand according to it in

each allocation cycle but if increment is not specified then

vector’s capacity get doubled in each allocation cycle. Vector

defines three protected data member:

 int capacityIncreament: Contains the increment value.

 int elementCount: Number of elements currently in vector

stored in it.

 Object elementData[]: Array that holds the vector is stored

in it.

79

Methods in Vector:

boolean add(Object obj): This method appends the specified

element to the end of this vector.

Example

import java.util.*;

class Vector_demo {

public static void main(String[] arg)

{

Vector v = new Vector(); // create default vector

v.add(1);

v.add(2);

v.add(“hello");

v.add(“world");

v.add(3);

System.out.println("Vector is " + v);

} }

o/p Vector is [1, 2, hello, world, 3]80

void add(int index, Object obj): This method inserts the specified

element at the specified position in this Vector.

Example

import java.util.*;

class Vector_demo {

public static void main(String[] arg) {

Vector v = new Vector(); // create default vector

v.add(0, 1);

v.add(1, 2);

v.add(2, “hello");

v.add(3, “world");

v.add(4, 3);

System.out.println("Vector is " + v);

}

}

Output:

Vector is: [1, 2, hello, world, 3]

81

Commonly used methods of Vector Class:

 void addElement(Object element): It inserts the element at the end of

the Vector.

 int capacity(): This method returns the current capacity of the vector.

 int size(): It returns the current size of the vector.

 void setSize(int size): It changes the existing size with the specified size.

 boolean contains(Object element): This method checks whether the

specified element is present in the Vector. If the element is been found it

returns true else false.

 boolean containsAll(Collection c): It returns true if all the elements of

collection c are present in the Vector.

 Object elementAt(int index): It returns the element present at the

specified location in Vector.

 Object firstElement(): It is used for getting the first element of the

vector.

 Object lastElement(): Returns the last element of the array.

 Object get(int index): Returns the element at the specified index.82

Contd..
 boolean isEmpty():This method returns true if Vector doesn’t have

any element.

 boolean removeElement(Object element): Removes the specifed

element from vector.

 boolean removeAll(Collection c): It Removes all those elements

from vector which are present in the Collection c.

 void setElementAt(Object element, int index): It updates the

element of specifed index with the given element.

83

